以中科院院士、上海交通大学教育部微生物代谢重点实验室教授邓子新领衔的研究团队与中科院微生物研究所合作,最近在多氧霉素(又名多抗霉素,宝丽安等)生物合成机理研究领域获得突破,从多氧霉素生物合成全基因簇克隆并获得39个候选基因入手,最终确定了20个必需基因,并一举成功实现了多氧霉素在异源宿主中的工程化生产,奠定了代谢工程技术产业化利用的基础。
据介绍,该团队还系统结合分子遗传学、生物化学及化学等多个学科的研究,成功提出了多氧霉素生物合成的遗传学和生物化学模型,相关研究成果于不久前在美国生物化学与分子生物学会会刊《生物化学杂志》上在线发表,并已申请国家发明专利。这是邓子新团队继杀念菌素、南昌霉素及井冈霉素等多种抗生素代谢工程研究取得一系列成果以来,在多氧霉素生物合成机理研究方面取得的又一原创性、系统性研究成果。
多氧霉素是世界上防治一些重要农作物、经济植物及果蔬真菌性病害的最佳生物农药之一,已显示出高效无毒、对环境友好且尚无耐药性出现等优良特性。自多氧霉素成功创制以来,一直是我国及世界各国广泛生产和使用的重要生物农药之一。长期以来,科学家们对该抗生素的生物合成具有浓厚兴趣,但其生物合成机理却一直悬而未决。
博士生陈文青在这项持续4年的研究中,充分显示出系统性创新能力。他最近还阐明了多氧霉素多个组分之间转换的分子机制,孕育着利用高新技术对多氧霉素工业菌株进行活性组分优化和产量提高的重大潜力,已经引起有关生物农药生产企业的高度关注和重视。该企业已经开始了与邓子新研究团队在多氧霉素代谢工程育种方面的合作,以致力于提升我国多氧霉素产业化的技术水平和产品的竞争力。(生物谷Bioon.com)
生物谷推荐原始出处:
J. Biol. Chem, 10.1074/jbc.M807534200
Characterization of the polyoxin biosynthetic gene cluster from Streptomyces cacaoi and engineered production of polyoxin H
Wenqing Chen, Tingting Huang, Xinyi He, Qingqing Meng, Delin You, Linquan Bai, Jialiang Li, Mingxuan Wu, Rui li, Zhoujie Xie, Huchen Zhou, Xiufen Zhou, Huarong Tan, and Zixin Deng
Bio-X Life Science Research Center, Shanghai Jiaotong University, Shangahi
A gene cluster (pol) essential for the biosynthesis of polyoxin, a nucleoside antibiotic widely used for the control of phytopathogenic fungi, was cloned from Streptomyces cacaoi. A 46,066-bp region was sequenced and 20 out of 39 of the putative ORFs were defined as necessary for polyoxin biosynthesis as evidenced by its production in a heterologous host, Streptomyces lividans TK24. The role of PolO and PolA in polyoxin synthesis was demonstrated by in vivo experiments, and their functions were unambiguously characterized as O-carbamoyltransferase, and UMP- enolpyruvyl transferase, respectively by in vitro experiments, which enabled making of a modified compound differing slightly from that of early proposed. These studies should provide a solid foundation for the elucidation of the molecular mechanisms for polyoxin biosynthesis, and set the stage for combinatorial biosynthesis using genes encoding different pathways for nucleoside antibiotics.