封面图片:含有氮杂嘌呤的化合物广泛存在,它们由多种链霉菌产生。封面图片描绘了龟裂链霉菌中两种氮杂嘌呤类物质——桑吉瓦霉素和丰加霉素的生物合成路径。图中的放大镜突出强调了合成途径中已经过生化测试证实的一些步骤。图片提供:Cheryl L. Ryan)
吡咯并嘧啶(pyrrolopyrimidine)核苷类似物一般被称为氮杂嘌呤-deazapurine,这是一类结构上变化多种多样的重要物质,它们在各种生态位中都广泛存在。在2008年8月25日出版的《化学与生物学》(Chemistry & Biology)上,来自美国亚利桑那大学的McCarty以及Bandarian发表了他们的最新研究结果。文章称,作者发现了龟裂链霉菌(Streptomyces rimosus)中存在一簇基因,这一基因簇和氮杂嘌呤抗生素——桑吉瓦霉素(sangivamycin)以及丰加霉素(toyocamycin)的产生有关。
在文章中研究人员还确定,这一基因簇中包含丰加霉素腈水合酶(toyocamycin nitrile hydratase),这是一种催化丰加霉素向桑吉瓦霉素转化的酶。除了这种罕见的腈水合酶之外,基因簇还编译产生一种GTP环水解酶I(GTP cyclohydrolase I),从而将氮杂嘌呤的生物合成与叶酸的生物合成联系起来。基因簇中还有一组嘌呤生物合成基因,它们能将GTP中的鸟嘌呤部分转化为类似腺嘌呤的氮杂嘌呤碱基,这类碱基存在于桑吉瓦霉素和丰加霉素当中。
科学家认为,他们发现的这一基因簇或许能帮助研究人员确认其它细菌种类当中的氮杂嘌呤生物合成途径。因此,以上研究结果为进一步研究含有氮杂嘌呤物质的次级代谢产物的生物合成过程,以及内在的化学变化提供了可能。(生物谷Bioon.com)
生物谷推荐原始出处:
Chemistry & Biology,Vol 15, 790-798, 25 August 2008,Reid M. McCarty and Vahe Bandarian
Deciphering Deazapurine Biosynthesis: Pathway for Pyrrolopyrimidine Nucleosides Toyocamycin and Sangivamycin
Reid M. McCarty1 and Vahe Bandarian1,2
1 Department of Biochemistry and Molecular Biophysics, University of Arizona, 1041 E. Lowell Street, Tucson, AZ 85721, USA
2 Department of Chemistry, University of Arizona, 1041 E. Lowell Street, Tucson, AZ 85721, USA
Pyrrolopyrimidine nucleosides analogs, collectively referred to as deazapurines, are an important class of structurally diverse compounds found in a wide variety of biological niches. In this report, a cluster of genes from Streptomyces rimosus (ATCC 14673) involved in production of the deazapurine antibiotics sangivamycin and toyocamycin was identified. The cluster includes toyocamycin nitrile hydratase, an enzyme that catalyzes the conversion of toyocamycin to sangivamycin. In addition to this rare nitrile hydratase, the cluster encodes a GTP cyclohydrolase I, linking the biosynthesis of deazapurines to folate biosynthesis, and a set of purine salvage/biosynthesis genes, which presumably convert the guanine moiety from GTP to the adenine-like deazapurine base found in toyocamycin and sangivamycin. The gene cluster presented here could potentially serve as a model to allow identification of deazapurine biosynthetic pathways in other bacterial species.