在12月1日发表在刊物《Journal of the American Chemical Society》上的文章中,科学家将两种自然存在于血液中的分子结合成了分子配合物,这种配合物能利用太阳能将水分解为氢气和氧气。
??这种分子配合物利用从太阳获得的能量创造出氢气,这是对于传统造氢的电极法的很好替代,而且这种技术将来也可能被应用于新型的制造氢替代能源的方法。
??来自日本Waseda大学的Tsuchida教授和Komatsu教授,通过和伦敦帝国学院的同事合作,将血液中的白蛋白和卟啉结合成了大型分子配合物,白蛋白是血清中最上层的成分,而卟啉用于携带氧气到全身各处,它还是造成血液呈红色的原因。卟啉通常和金属结合在一起,血液中的卟啉中心有一个铁原子,但是科学家在实验中将这个铁换成了锌,这完全改变了卟啉的化学性质。
??接着小组将改变后的卟啉分子和白蛋白结合,这种白蛋白同样经过了遗传工程技术的修正,能提高整个过程的效率。结果是科学家证明了这种分子配合物对于光非常敏感,能捕捉光的能量将水分子分裂为氢和氧。
??帝国理工学院的细胞分子生物学系的结构生物学家Stephen Curry博士表示:“这结果显示,通过改变小的成分,例如卟啉分子的金属,就可以操纵人体内自然的分子和蛋白。能够利用这些生物结构将水分解是非常令人激动的,未来这能为我们长期提供更好的绿色氢能源。”
英文原文:
Genetically engineered blood protein can be used to split water into oxygen and hydrogen
Here comes another twist to the 'bio-' prefix we use so often: scientists have combined two molecules that occur naturally in our blood to engineer a molecular complex that uses solar energy to split water into hydrogen and oxygen, says research published today in the Journal of the American Chemical Society .
This biological molecular complex can use energy from the sun to create hydrogen gas, providing an alternative to electrolysis, the method typically used to split water into its constituent parts. The breakthrough may pave the way for the development of novel ways of creating hydrogen for use as fuel in the future.
Professors Tsuchida and Komatsu from Waseda University, Japan, in collaboration with Imperial College London, synthesised a large molecular complex from albumin, a protein molecule that is found at high levels in blood serum, and porphyrin, a molecule which is used to carry oxygen around the body and gives blood its deep red colour. Porphyrin molecules are normally found combined with metals, and in their natural state in the blood they have an iron atom at their centre. The scientists modified the porphyrin molecule to swap the iron for a zinc atom in the middle, which completely changed the chemistry and characteristics of the molecule.
This modified porphyrin molecule was then combined with albumin; with the albumin molecule itself being modified by genetic engineering to enhance the efficiency of the process. The resulting molecular complex was proven to be sensitive to light, and can capture light energy in a way that allows water molecules to be split into molecules of hydrogen and oxygen.