4月14日,《细胞科学期刊》(Journal of Cell Science)发表了中国科学院遗传与发育生物学研究所,德国马普生物物理化学研究所的研究人员的成果,发现了果蝇中仅有的两个PAT家族蛋白Plin1和Plin2对脂解既有相同,又有相反的调控功能,揭示了果蝇PAT家族蛋白在脂解中的复杂功能,为后续解析PAT家族蛋白在进化上的功能提供了有力的理论依据。
脂类是生物体内重要的能量储存形式,保持人体内的脂类代谢平衡十分重要。脂类代谢紊乱会导致高血脂、胰岛素抗性、糖尿病和脂肪肝等疾病。在细胞中,脂类主要是以甘油三酯和胆固醇酯等中性脂的形式储存在于脂滴(lipid droplet)中。
PAT家族蛋白是一类高度保守且特异性定位于脂滴表面的蛋白。前人的工作发现,PAT家族蛋白参与脂解的调控。但是,体内PAT家族蛋白成员之间是如何分工协调脂解仍然不太清楚。
研究人员以果蝇为模式生物,发现了果蝇中仅有的两个PAT家族蛋白Plin1和Plin2对脂解既有相同,又有相反的调控功能。通过对Plin1和Plin2突变体和过表达株系脂肪细胞的表型分析发现,Plin1促进了脂解,而Plin2抑制了脂解。
进一步研究发现,Plin1对于脂酶HSL从细胞质定位到脂滴表面是必须的。在Plin1和Plin2双突变体脂肪细胞中,脂滴大小和脂类含量要明显低于Plin1和Plin2的单突变体,说明Plin1还具有抑制脂解的功能。研究同时还发现,Plin1特有的C端区域决定了其与Plin2之间功能的不同。
这项研究揭示了果蝇PAT家族蛋白在脂解中的复杂功能,为后续解析PAT家族蛋白在进化上的功能提供了有力的理论依据。
中国科学院遗传与发育生物学研究所的黄勋研究员为此篇论文的通讯作者,他早年毕业于厦门大学,2006年起任中国科学院遗传与发育生物学研究所研究员,入选百人计划,主要研究方向是动物发育与疾病的遗传调控。
去年其实验室曾在PLoS Genetics杂志上发表文章,揭示了脂类异位储积的新机制。新研究发现为后续大规模挖掘控制脂滴异位累积的基因,阐明其分子机理奠定了基础。(生物谷Bioon.com)
doi:10.1242/?jcs.101329
PMC:
PMID:
Opposite and redundant roles of the two Drosophila Perilipins in lipid mobilization
Junfeng Bi*, Yanhui Xiang*, Haiyang Chen, Zhonghua Liu, Sebastian Gr?nke, Ronald P. Kühnlein and Xun Huang#
Lipid droplets are the main lipid storage sites in cells. Lipid droplet homeostasis is regulated by the surface accessibility of lipases. Mammalian adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) are two key lipases for basal and stimulated lipolysis, respectively. Perilipins, the best known lipid droplet surface proteins, can either recruit lipases or prevent the access of lipases to lipid droplets. Mammals have five Perilipins, which often exhibit redundant functions, precluding the analysis of the exact role of individual Perilipin in vivo. Drosophila has only two Perilipins, PLIN1/LSD-1 and PLIN2/LSD-2. Previous studies revealed that PLIN2 is important for protecting lipid droplets from lipolysis mediated by Brummer (BMM), the Drosophila homolog of ATGL. In this study, we report the functional analysis of PLIN1 and Drosophila HSL (dHSL). Loss-of-function and overexpression studies reveal that as opposed to PLIN2, PLIN1 likely facilitates lipid mobilization. dHSL is recruited from the cytosol to the surface of lipid droplets under starved conditions and PLIN1 is necessary for the starved induced lipid droplet localization of dHSL. Moreover, phenotypic analysis of plin1;plin2 double mutants revealed that PLIN1 and PLIN2 may have redundant functions in protecting lipid droplets from lipolysis. Therefore, the two Drosophila Perilipins have both opposite and redundant roles. Domain swapping and deletion analyses indicate that the C-terminal region of PLIN1 confers functional specificity on PLIN1. Our study highlights the complex roles of Drosophila Perilipins proteins and the evolutionarily conserved regulation of HSL translocation by Perilipins.