美国麻省理工学院科学家开发了一种高效的新方法来配对细胞,使其融合在一起成为杂交细胞。这一新技术能让科学家更容易地研究细胞结合时发生的情况,比如融合成熟细胞和胚胎干细胞以研究其中发生的遗传重新编程。相关论文1月4日在线发表于《自然—方法学》(Nature Methods)。
这一简便而精巧的分拣手段,将细胞融合的成功率从10%提高到大约50%,而且允许数千个细胞配对一起进行。
麻省理工学院副教授Joel Voldman表示,尽管细胞融合技术出现已经有较长的时间,但是存在很多技术限制。在融合细胞之前进行正确的细胞配对,是一个主要的困难。如果研究人员的工作与两种细胞类型有关,比如A和B,那么最后除了需要的AB配对,还会得到很多AA和BB这样的配对。
先前的方法是在细胞通过一个芯片时,把细胞捕获在一个微型杯中。每个杯子只能容纳2个细胞,但是并没有办法控制这两个细胞到底是A和B、A和A、还是B和B。
相比之下,研究小组开发的新分拣装置能够保证捕获并配对不同种类的细胞。首先,A类型细胞从一个方向通过芯片,并被捕获在一个只能容纳一个细胞的容器中。一旦这个细胞被捕获,液体就会开始从反方向流过芯片,将这个细胞从只能容纳一个细胞的小杯中推出,进入对面一个大一些的杯子里。
一旦每个大杯中都有了一个A型细胞,B型细胞就流入大杯。由于每个杯子只能容纳2个细胞,最后杯中就是1个A型细胞和1个B型细胞。当细胞在杯中配对后,就可以通过电脉冲融合细胞膜从而让这2个细胞结合在一起。
除了有助于干细胞重新编程研究外,这一技术还可用来研究任意种类细胞之间的交互作用。Voldman表示:“这是个通用的装置。”(生物谷Bioon.com)
生物谷推荐原始出处:
Nature Methods 4 January 2009 | doi:10.1038/nmeth.1290
Microfluidic control of cell pairing and fusion
Alison M Skelley1,2,6, Oktay Kirak3,6, Heikyung Suh3, Rudolf Jaenisch3,4 & Joel Voldman1,2,5
Cell fusion has been used for many different purposes, including generation of hybridomas and reprogramming of somatic cells. The fusion step is the key event in initiation of these procedures. Standard fusion techniques, however, provide poor and random cell contact, leading to low yields. We present here a microfluidic device to trap and properly pair thousands of cells. Using this device, we paired different cell types, including fibroblasts, mouse embryonic stem cells and myeloma cells, achieving pairing efficiencies up to 70%. The device is compatible with both chemical and electrical fusion protocols. We observed that electrical fusion was more efficient than chemical fusion, with membrane reorganization efficiencies of up to 89%. We achieved greater than 50% properly paired and fused cells over the entire device, fivefold greater than with a commercial electrofusion chamber and observed reprogramming in hybrids between mouse embryonic stem cells and mouse embryonic fibroblasts.
1 Research Laboratory of Electronics, 50 Vassar Street, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, USA.
2 Microsystems Technology Laboratory, 60 Vassar Street, MIT, Cambridge, Massachusetts 02139, USA.
3 Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, Massachusetts 02142, USA.
4 Department of Biology, MIT, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA.
5 Electrical Engineering and Computer Science Department, 77 Massachusetts Avenue, MIT, Cambridge, Massachusetts 02139, USA.
6 These authors contributed equally to this work.