厦门大学生物医学研究院许华曦教授和张云武教授最新研究鉴定出一个小鼠基因蛋白Rps23r1,并发现该蛋白可以抑制与老年痴呆症(Alzheimer's disease, AD)发病密切相关的生化过程。这一研究为开发治疗老年痴呆症的药物提供了新的靶点,并为人类与小鼠之间在老年痴呆症发生上的差异提供了可能的解释。该成果目前已被《神经元》杂志收录并发表(厦门大学为第一作者单位)。
大量实验证据表明Ab的大量生成是引发老年痴呆症的关键原因,而tau蛋白的高度磷酸化也参与了某些神经退行性疾病的发生。因此鉴定那些能够影响Ab产生和tau蛋白磷酸化的新基因蛋白并阐明其作用机理,对于开发治疗这些疾病的药物,具有非常重要的意义。
通过与洛克菲勒大学的诺贝尔奖得主Paul Greengard教授、斯坦福大学的美国科学院院士Stanley N. Cohen教授、Functional Genetics公司的Limin Li博士及Burnham研究所的科学家们的多年合作研究,许教授和张教授的实验室应用随机同源基因干扰技术(Random Homozygous Gene Perturbation)在小鼠细胞中筛选、鉴定出Rps23r1基因,并通过细胞实验和转基因动物模型,证实了Rps23r1蛋白对Ab生成和tau磷酸化的抑制作用。此外,过表达Rps23r1还增加了神经突触,表明其能够有所改善老年痴呆症转基因小鼠的学习记忆。更重要的是,研究组发现Rps23r1不仅在小鼠细胞内起作用,而且在人源细胞内也同样发挥功能,这说明人体内也具有该基因所介导的信号通路,可以作为药物开发的潜在靶点。
另一方面,与人类随着年龄的老化会易患老年痴呆症不同,老龄的野生型小鼠不会出现老年痴呆症的病理特征。先前的研究认为这可能是由于小鼠的Ab序列与人的Ab序列不同的缘故。许教授和张教授的这项研究发现了Rps23r1基因在小鼠中的起源,而在人类中还没有发现Rps23r1的同源基因。因此如果人类中的确没有Rps23r1同源基因的话,两位教授的发现就为人与小鼠的老年痴呆症发病差异提供了另一种可能的解释,即小鼠基因组中特异性地存在着某些保护性的基因如Rps23r1,可以保护小鼠不发生老年痴呆症,这将为预防人类老年痴呆症开拓一个新的研究方向。(生物谷Bioon.com)
厦门大学最新研究成果:
Science:RIP3具有细胞凋亡/细胞坏死开关作用
Lab Chip:玻璃芯片中的微米级肺泡
JCB:Wnt信号通路调节机制
JBC:Arx蛋白质在细胞核定位分子机理及调控方式研究
Nature Cell Biology:蛋白分子Axin可在细胞受损后控制p53基因表达
Oncogene:肺癌细胞表观遗传学研究
生物谷推荐原始出处:
Neuron, Volume 64, Issue 3, 328-340, 12 November 2009 doi:10.1016/j.neuron.2009.08.036
A Functional Mouse Retroposed Gene Rps23r1 Reduces Alzheimer's β-Amyloid Levels and Tau Phosphorylation
Yun-wu Zhang1, 2, 8, Shijie Liu2, 8, Xue Zhang2, 8, Wu-Bo Li3, 8, Yaomin Chen2, Xiumei Huang1, 2, Liangwu Sun2, Wenjie Luo4, William J. Netzer4, Richard Threadgill3, Gordon Wiegand3, Ruishan Wang1, 2, Stanley N. Cohen5, Paul Greengard4, Francesca-Fang Liao2, 7, Limin Li3, 6, , and Huaxi Xu2, ,
1 Institute for Biomedical Research and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Xiamen University, Xiamen 361005, China
2 Neurodegenerative Disease Research Program, Burnham Institute for Medical Research, La Jolla, CA 92037, USA
3 Functional Genetics, Inc., Gaithersburg, MD 20878, USA
4 Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY 10065, USA
5 Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
6 Department of Pathology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking union Medical College, Beijing 100005, China
7 Department of Pharmacology, University of Tennessee Health Science Center College of Medicine, Memphis, TN 38163, USA
Senile plaques consisting of β-amyloid (Aβ) and neurofibrillary tangles composed of hyperphosphorylated tau are major pathological hallmarks of Alzheimer's disease (AD). Elucidation of factors that modulate Aβ generation and tau hyperphosphorylation is crucial for AD intervention. Here, we identify a mouse gene Rps23r1 that originated through retroposition of ribosomal protein S23. We demonstrate that RPS23R1 protein reduces the levels of Aβ and tau phosphorylation by interacting with adenylate cyclases to activate cAMP/PKA and thus inhibit GSK-3 activity. The function of Rps23r1 is demonstrated in cells of various species including human, and in transgenic mice overexpressing RPS23R1. Furthermore, the AD-like pathologies of triple transgenic AD mice were improved and levels of synaptic maker proteins increased after crossing them with Rps23r1 transgenic mice. Our studies reveal a new target/pathway for regulating AD pathologies and uncover a retrogene and its role in regulating protein kinase pathways.