2012年8月15日 讯 /生物谷BIOON/ --在两项新研究中,研究人员在寻求绘制导致糖尿病的生物途径图谱过程中,鉴定出新的与这种疾病相关联的基因。
根据两篇在线发表在Nature Genetics期刊上的论文,研究人员鉴定出数量可观的新的基因座位(一条染色体上的特定区域,也是一个基因所在的地方)与以前的研究没有描述过的血糖特征和II型糖尿病(type 2 diabetes, T2D)相关联。
在这一篇论文中,研究人员描述了影响II型糖尿病易感性的基因变异特征。他们对将近15万个人进行II型糖尿病关联分析,然后发现10个新的基因座位。他们还作出结论,这种基因图谱(genetic profiling)有潜力提供一种有用的风险评估,以便来评估人们患上II型糖尿病的几率。
在第二项研究中,研究人员发现了另外38个新的基因座位,它们影响在之前的研究中人们没有描述过的血糖特征,从而使得影响血糖特征的信号总数达到53个。
澳大利亚西澳大利亚大学病理学、实验室医学与人口健康学院研究员Jennie Hui博士说,“这项研究将有助于人们更好地理解与血糖控制相关联的
基因,其中这种血糖控制可能与环境因素相互作用而触发糖尿病产生。”(生物谷Bioon.com)
本文编译自Genetic clues for type 2 diabetes
doi: 10.1038/ng.2383
PMC:
PMID:
Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes
Andrew P Morris, Benjamin F Voight, Tanya M Teslovich, Teresa Ferreira et al
To extend understanding of the genetic architecture and molecular basis of type 2 diabetes (T2D), we conducted a meta-analysis of genetic variants on the Metabochip, including 34,840 cases and 114,981 controls, overwhelmingly of European descent. We identified ten previously unreported T2D susceptibility loci, including two showing sex-differentiated association. Genome-wide analyses of these data are consistent with a long tail of additional common variant loci explaining much of the variation in susceptibility to T2D. Exploration of the enlarged set of susceptibility loci implicates several processes, including CREBBP-related transcription, adipocytokine signaling and cell cycle regulation, in diabetes pathogenesis.
doi: 10.1038/ng.2385
PMC:
PMID:
Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways
Robert Scott, Vasiliki Lagou, Ryan P. Welch et al
Through genome-wide association meta-analyses of up to 133,010 individuals of European ancestry without diabetes, including individuals newly genotyped using the Metabochip, we have increased the number of confirmed loci influencing glycemic traits to 53, of which 33 also increase type 2 diabetes risk (q < 0.05). Loci influencing fasting insulin concentration showed association with lipid levels and fat distribution, suggesting impact on insulin resistance. Gene-based analyses identified further biologically plausible loci, suggesting that additional loci beyond those reaching genome-wide significance are likely to represent real associations. This conclusion is supported by an excess of directionally consistent and nominally significant signals between discovery and follow-up studies. Functional analysis of these newly discovered loci will further improve our understanding of glycemic control.