据物理学家组织网11月6日报道,最近美国杜克大学领导了一项研究,让猴子学习只用脑活动来控制两条虚拟手臂的运动。这将对开发双向脑控假体设备,帮助严重瘫痪病人恢复运动能力起到极大推动作用。相关论文发表在11月6日的《科学—转化医学》上。
全球有数百万人患有感觉和运动方面的疾病,这是由脊髓受到伤害而导致的。研究人员正在研究各种工具,希望把患者脑部和各种为残疾人设计的设备连接起来,帮他们恢复运动和触觉。杜克大学神经工程中心在2000年初发明了脑机接口,这一技术在“伸手取物”任务中很有潜力,但至今还只能控制一条假肢。
“在日常活动中,从点击键盘到开罐头,双手配合运动非常关键,”论文高级作者、杜克大学医学院神经生物学教授米格尔·尼科莱利斯说,“未来脑机接口的目标是要能结合多个肢体,恢复严重瘫痪病人的运动能力,给他们带来更大的利益。”
研究人员在一个虚拟环境对猴子进行了训练。在此虚拟环境中,它们能看到屏幕上自己有两条真实的“化身手臂”。在双手运动任务中,研究人员鼓励它们把“化身手臂”伸向某个特定目标。猴子先是学会了用一双操纵杆来控制化身手臂,随后逐渐学会仅通过脑活动来控制“化身手臂”,而自己的手臂不动。在控制两条“化身手臂”时,猴子表现越来越好。研究人员发现,它们脑皮层的多区域表现出广泛的可塑性。这表明,猴子的脑部可能把“化身手臂”与它们的身体内影像结合在了一起。
为了让猴子控制两条虚拟手臂,尼科莱利斯和同事研究了大范围的脑皮层记录,努力为脑机接口提供足够的信号,以精确控制双手运动。他们发现,在双手运动时,神经元电活动形成的特殊图形,与分别移动每条手臂时所形成的神经图形不同。这表明是大量的神经元集合——而不是单个神经元——决定了正常运动功能下面的基本生理单位。皮层上小部分神经元样本,或许不足以通过脑机接口控制复杂的运动行为。
“我们在观察单个神经元或整个皮层细胞群体的性质时注意到,当两条手臂在双手任务中互相配合时,如果只把指挥右手和左手运动的神经元活动简单地相加,就无法预测某个神经元或整个神经元群体想要做什么。”尼科莱利斯说,“这一发现表明当两手同时做事时,大脑还有一种自发的性质,是一种非线性加总。”
尼科莱利斯正在将这些研究发现并入“重新行走计划”。这项计划是一项国际合作项目,致力于建造脑控神经假体设备,并打算在2014年FIFA世界杯开幕式上展示他们的首个脑控外骨骼。(生物谷Bioon.com)
生物谷推荐的英文摘要
Science Translational Medicine DOI: 10.1126/scitranslmed.3006159
A Brain-Machine Interface Enables Bimanual Arm Movements in Monkeys
Peter J. Ifft1,2, Solaiman Shokur2,3, Zheng Li2,4, Mikhail A. Lebedev2,4 and Miguel A. L. Nicolelis
Brain-machine interfaces (BMIs) are artificial systems that aim to restore sensation and movement to paralyzed patients. So far, BMIs have enabled only one arm to be moved at a time. Control of bimanual arm movements remains a major challenge. We have developed and tested a bimanual BMI that enables rhesus monkeys to control two avatar arms simultaneously. The bimanual BMI was based on the extracellular activity of 374 to 497 neurons recorded from several frontal and parietal cortical areas of both cerebral hemispheres. Cortical activity was transformed into movements of the two arms with a decoding algorithm called a fifth-order unscented Kalman filter (UKF). The UKF was trained either during a manual task performed with two joysticks or by having the monkeys passively observe the movements of avatar arms. Most cortical neurons changed their modulation patterns when both arms were engaged simultaneously. Representing the two arms jointly in a single UKF decoder resulted in improved decoding performance compared with using separate decoders for each arm. As the animals’ performance in bimanual BMI control improved over time, we observed widespread plasticity in frontal and parietal cortical areas. Neuronal representation of the avatar and reach targets was enhanced with learning, whereas pairwise correlations between neurons initially increased and then decreased. These results suggest that cortical networks may assimilate the two avatar arms through BMI control. These findings should help in the design of more sophisticated BMIs capable of enabling bimanual motor control in human patients.