据国外媒体报道,目前,科学家使用激光在活果蝇头部成功钻出头发丝直径的一个小孔,便于观察研究果蝇大脑的运行状况。这项研究也将用于测试蠕虫、蚂蚁和老鼠等动物。
显微观察活体动物使科学家掌握更多关于动物生物学特征,微小透镜植入活体老鼠身体内部,有助于研究人员研究癌症如何实时形成,并评估潜在药物效力。
科学家对小型活体动物进行“活体镜检”经常需要很长时间,并要求娴熟的技术和灵巧度。目前,美国斯坦福大学系统工程师苏普里尤-辛哈(Supriyo Sinha)和同事最新研制一种方法,能够最快地对活体动物进行显微镜检查,仅需不足1秒时间,并且主要采用自动机械化方式。
首先,科学家冷冻果蝇使其麻醉,小心翼翼地使用镊子夹着昆虫,用胶水粘在玻璃纤维上面,便于固定果蝇的身体和头部;然后,使用一种高能脉冲紫外线激光器,在果蝇头部钻出12-350微米的小孔;最后,他们将实验手术后的果蝇放入含盐溶液,使解剖大脑组织处于健康状态。
科学家在显微镜下分析果蝇大脑活跃性,这只进行实验的果蝇经过基因改良,体内蛋白质与钙离子结合释放出绿光,从而便于研究果蝇的大脑神经活动特征。
据悉,研究人员使用传统方法描绘大脑活跃性需要较长的时间,有时需要18小时,而最新采用的激光钻孔技术仅需传统方法百分之一的时间,此外,可以将多个实验活体动物同时进行实验,绘制出它们的大脑活跃状态。目前,这项最新研究发表在近期出版的美国《国家科学院院刊》上。 (生物谷Bioon.com)
生物谷推荐的英文摘要
Proceedings of the National Academy of the Sciences of the United States of America doi: 10.1073/pnas.1216287110
High-speed laser microsurgery of alert fruit flies for fluorescence imaging of neural activity
Supriyo Sinhaa,b,1, Liang Lianga,b, Eric T. W. Hoc, Karel E. Urbanekb, Liqun Luoa,d, Thomas M. Baerb,e,1, and Mark J. Schnitzera,b,d,f,1
Intravital microscopy is a key means of monitoring cellular function in live organisms, but surgical preparation of a live animal for microscopy often is time-consuming, requires considerable skill, and limits experimental throughput. Here we introduce a spatially precise (<1-μm edge precision), high-speed (<1 s), largely automated, and economical protocol for microsurgical preparation of live animals for optical imaging. Using a 193-nm pulsed excimer laser and the fruit fly as a model, we created observation windows (12- to 350-μm diameters) in the exoskeleton. Through these windows we used two-photon microscopy to image odor-evoked Ca2+ signaling in projection neuron dendrites of the antennal lobe and Kenyon cells of the mushroom body. The impact of a laser-cut window on fly health appears to be substantially less than that of conventional manual dissection, for our imaging durations of up to 18 h were ~5–20 times longer than prior in vivo microscopy studies of hand-dissected flies. This improvement will facilitate studies of numerous questions in neuroscience, such as those regarding neuronal plasticity or learning and memory. As a control, we used phototaxis as an exemplary complex behavior in flies and found that laser microsurgery is sufficiently gentle to leave it intact. To demonstrate that our techniques are applicable to other species, we created microsurgical openings in nematodes, ants, and the mouse cranium. In conjunction with emerging robotic methods for handling and mounting flies or other small organisms, our rapid, precisely controllable, and highly repeatable microsurgical techniques should enable automated, high-throughput preparation of live animals for optical experimentation.