物种之间的合作倾向于导致形成具有一个嵌套结构的互助网络。虽然嵌套性可能会增加生物多样性和持久性,但理论工作表明,嵌套网络往往没有非结构化网络稳定。这篇论文通过分析表明,嵌套网络是由一个能使互助群落中物种丰富度最大化的机制形成的,嵌套物种的丰富度与群落的可塑性直接相关。这项工作为研究生态因素和演化历史怎样形成生态网络提供了一个模型。(生物谷Bioon.com)
生物谷推荐英文摘要:
Nature doi: 10.1038/nature12438
Emergence of structural and dynamical properties of ecological mutualistic networks
Samir Suweis,Filippo Simini,Jayanth R. Banavar & Amos Maritan
Mutualistic networks are formed when the interactions between two classes of species are mutually beneficial. They are important examples of cooperation shaped by evolution. Mutualism between animals and plants has a key role in the organization of ecological communities. Such networks in ecology have generally evolved a nested architecture independent of species composition and latitude; specialist species, with only few mutualistic links, tend to interact with a proper subset of the many mutualistic partners of any of the generalist species1. Despite sustained efforts to explain observed network structure on the basis of community-level stability or persistence, such correlative studies have reached minimal consensus. Here we show that nested interaction networks could emerge as a consequence of an optimization principle aimed at maximizing the species abundance in mutualistic communities. Using analytical and numerical approaches, we show that because of the mutualistic interactions, an increase in abundance of a given species results in a corresponding increase in the total number of individuals in the community, and also an increase in the nestedness of the interaction matrix. Indeed, the species abundances and the nestedness of the interaction matrix are correlated by a factor that depends on the strength of the mutualistic interactions. Nestedness and the observed spontaneous emergence of generalist and specialist species occur for several dynamical implementations of the variational principle under stationary conditions. Optimized networks, although remaining stable, tend to be less resilient than their counterparts with randomly assigned interactions. In particular, we show analytically that the abundance of the rarest species is linked directly to the resilience of the community. Our work provides a unifying framework for studying the emergent structural and dynamical properties of ecological mutualistic networks.