叶绿体,是植物细胞的绿色太阳能发电机,也曾是自主的生物。约十亿年前,这一切发生了改变,当时它们被更大的细胞所吞噬,但没有被消化掉。从那时起,它们就已经失去了自主权。随着时间推移,它们的大部分遗传信息找到了进入细胞核的方式;今天,叶绿体离开宿主将不能存活。马克斯普朗克植物分子生理学研究所Ralph Bock研究团队发现,叶绿体基因采取一种直接路线进入细胞核,在细胞核内,尽管存在结构差异,它们还是能被正确读取。
蓝细菌(Cyanobacteria,蓝绿藻类原核生物)是最古老的生命形式,似乎是植物细胞内绿色叶绿体的先驱。它们没有真正的细胞核,但它们的遗传物质由四个标准部件组成,正如人类、植物与动物的那样。因此,编码叶绿体DNA的基因在细胞核也可被读取,现在,早期进化期间仍存在于细胞器中的许多基因的确专门位于细胞核基因组。一直尚未知它们是如何按自己的方式的。可能的2种机制:叶绿体DNA片段直接输送入细胞核或以mRNA形式输入然后再反转录回DNA。
DNA直接输送似乎在叶绿体中占主导地位,但这条通路有两个问题。第一个问题存在于启动子,它是确保基因被识别成本该识别成的那样的DNA序列。它们都位于基因上游,招募基因转录所必需的蛋白质。但是,叶绿体启动子不能被细胞核蛋白所识别,以至于DNA读取机制必须跳过这些新来的基因。第二个就是基因序列的正确处理。基因由几个模块组成,被非编码DNA区域(内含子)所分隔,因为内含子阻碍蛋白质合成,需要把它们从mRNA中移除,这就是所说的剪接过程。整个过程,以正确蛋白合成为终点,一旦发生就只能恢复一次。另外,细胞核内的mRNA加工处理不同于叶绿体内的,一直以来,叶绿体内含子似乎是细胞核内叶绿体基因正确读取不能克服的障碍。
尽管这样,还是会形成功能蛋白。甚至认为内含子帮助剪接酶自我折叠成稳定的RNA结构,因此指导酶到正确位置。同时,RNA结构似乎帮助核糖体寻找蛋白质合成的正确起始点。
因为基因输入细胞核内是一个极其缓慢的进化过程,可能需要花数百万年时间,现在研究其所含机制是不可能的。但是,研究人员现在在实验室已设法快速输入此基因。因为细胞遭受高选择压力,叶绿体基因进入细胞核的迁移成为生存所必需的,因此它能随时可见。结果发现,输入在没有RNA参与的情况下发生,显然DNA跳过细胞叶绿体直接进入细胞核内。(生物谷bioon.com)
doi:10.1016/j.cub.2012.03.005
PMC:
PMID:
Experimental Reconstruction of the Functional Transfer of Intron- Containing Plastid Genes to the Nucleus
Ignacia Fuentes, Daniel Karcher, Ralph Bock
Background Eukaryotic cells arose through the uptake of bacterial endosymbionts and their gradual conversion into cell organelles (mitochondria and chloroplasts). In this process, a massive transfer of genes from the genome of the endosymbiont to the nuclear genome of the host cell occurred. Whereas intron-free organellar genescould conceivably enter the nucleus as DNA pieces and become functional nuclear genes, the transfermechanisms of organellar genescontaining prokaryotic-type group I or group II introns are not clear. Results We describe an experimental system that allows us to screen for functional endosymbiotic genetransferof intron-containing chloroplast genes to the nuclear genome. To distinguish between DNA-mediated and RNA/complementary DNA-mediated transfer, we have constructed an antibiotic resistance gene that is interrupted by a chloroplast group II intron and whose expression is dependent upon both intron removal andgenetransfer from the chloroplast genome to the nuclear genome. Screening chloroplast-transformed tobacco plants for the acquisition of the antibiotic resistance via genetransfer to the nucleus, a large number of transfer events were selected. We show that all events involved the direct DNA-mediatedtransfer of the intron-containing chloroplast gene into the nuclear genome. Gene activity in the nucleus is brought about by utilization of cryptic splice sites within chloroplast intron sequences resulting in appearance of a contiguous reading frame. Conclusion Our data pinpoint mechanisms for the functionaltransfer of organellar genes to the nucleus and demonstrate that intron possession is not an insurmountable obstacle to DNA-mediated endosymbioticgenetransfer.