从国际空间站看到的地球的稀薄的可呼吸的大气
12月1日,Rensselaer技术研究所的纽约天文生物学中心的布鲁斯-沃森所带领的研究团队在《自然》上发表了他们最新的研究结果"The oxidation state of Hadean magmas and implications for early Earth’s atmosphere",沃森称:“人们总是认为地球上的条件‘一开始’是非常简化的,因为最初硅酸盐物质(最终形成地幔)和形成地核的铁元素是混合在一起的,元素(简化的)铁的存在暗示简化的条件,因此也暗示简化的气体诸如甲烷、硫化氢和氨气”。科学家使用术语“简化的”来描述只有有限的氧的条件。
关于早期地球,被广泛地接受的观点是,那时的大气充斥着有毒的甲烷、一氧化碳、硫化氢以及氨气,持续的氧化条件仅在地球23亿岁时,即约地球目前年龄的一半时,才开始。
沃森和他的同事现在把这个假设颠倒了过来,他们认为早期大气可能由更多的富含氧气的化合物组成,这些化合物在目前的地球大气内存在--包括水、二氧化碳和二氧化硫。
地球的大气由火山活动释放的气体形成的理论,这个研究小组在实验室里重构了岩浆形成的条件,检验是什么气体在那些岩浆内存在。当岩浆通过地球的内部,它或者喷发到地面,或者在地下凝固。对早期地球的岩浆条件的研究努力变得非常困难,因为事实是,地球在不断地循环其地壳,因此几乎没有地球历史的最初5亿年的证据。然而,锆是那个时期留下的唯一矿物,年龄超过40亿岁,能够提供回溯那个时期的窗口。
“我们使用一个‘指数’来度量氧压,采用一种罕见的地球元素铈的比率的形式,”沃森解释道。铈是一种有用的对氧丰度的度量,因为它能够具有两种不同的氧化态,取决于系统内氧的压力。“锆矿内的铈比率,我们在实验室里把它作为氧压的函数进行校正,然后应用到古老的锆矿。”
这项研究揭示了铈的氧化程度更高的那种化合物的数量较高,这意味着早期地球的火山气体相对地氧化程度更高,更像那些今天的火山喷发出的气体。然而,沃森补充道,他们的结论并不暗示早期大气内有大量的自由氧;生命花费了--15亿年--才把氧的水平提高到目前的情况。
因为人们并不认为氧化的大气是生命的伟大起点--甲烷和其贫氧的相似化合物为从无机化合物到氨基酸和DNA提供了一个好得多的进步之阶--这个新结论对确切地理解生命怎样和何时在这颗行星上开始,以及生命的成份是否确实是从宇宙的其它地方过来的,具有指导意义。(生物谷 Bioon.com)
doi:10.1038/nature10655
PMC:
PMID:
The oxidation state of Hadean magmas and implications for early Earth’s atmosphere
Dustin Trail,E. Bruce Watson & Nicholas D. Tailby
Magmatic outgassing of volatiles from Earth’s interior probably played a critical part in determining the composition of the earliest atmosphere, more than 4,000 million years (Myr) ago1. Given an elemental inventory of hydrogen, carbon, nitrogen, oxygen and sulphur, the identity of molecular species in gaseous volcanic emanations depends critically on the pressure (fugacity) of oxygen. Reduced melts having oxygen fugacities close to that defined by the iron–wüstite buffer would yield volatile species such as CH4, H2, H2S, NH3 and CO, whereas melts close to the fayalite–magnetite–quartz buffer would be similar to present-day conditions and would be dominated by H2O, CO2, SO2 and N2 (refs 1–4). Direct constraints on the oxidation state of terrestrial magmas before 3,850 Myr before present (that is, the Hadean eon) are tenuous because the rock record is sparse or absent. Samples from this earliest period of Earth’s history are limited to igneous detrital zircons that pre-date the known rock record, with ages approaching ~4,400 Myr (refs 5–8). Here we report a redox-sensitive calibration to determine the oxidation state of Hadean magmatic melts that is based on the incorporation of cerium into zircon crystals. We find that the melts have average oxygen fugacities that are consistent with an oxidation state defined by the fayalite–magnetite–quartz buffer, similar to present-day conditions. Moreover, selected Hadean zircons (having chemical characteristics consistent with crystallization specifically from mantle-derived melts) suggest oxygen fugacities similar to those of Archaean and present-day mantle-derived lavas2, 3, 4, 9, 10 as early as ~4,350 Myr before present. These results suggest that outgassing of Earth’s interior later than ~200 Myr into the history of Solar System formation would not have resulted in a reducing atmosphere.