来自法国、意大利和德国的研究人员在新一期英国Nature杂志上发表研究论文介绍说,黑松露基因组由7500个基因组成,是迄今破译的最大的菌类基因组,其中有6000个基因与其他菌类共享。研究人员对剩余的1500个黑松露独有基因进行了分析,得出了诸多有关黑松露的重要信息,使人们对这种神秘块菌有了更多认识。
欧洲著名食材黑松露主要产于法国境内以及西班牙和意大利一些地区,因其味美、价高而被誉为“黑钻石”。欧洲研究人员最新报告说,他们成功测序了黑松露基因组,其中有一些特殊基因可以揭示其产地来源,这将有助于辨别真假黑松露。
黑松露目前还很难实现人工种植,仅在某些地区野外发现了与橡树等在地下共生的黑松露,其稀缺性使得市场上的黑松露售价已高达每公斤数千美元。
这次的基因分析显示,黑松露中有一些特殊基因可以揭示其地理原产地,比如生长土壤等环境特性。研究小组说,他们将其中的10个与产地有关的关键基因标记纳入了一个“黑松露数据银行”。这些基因标记涵盖了法国、意大利和西班牙50个地区发现的黑松露的遗传特性,今后就可以帮助鉴别黑松露的原产地。
另外,基因测序结果显示,黑松露有专门的基因编码合成与其独特味道有关的硫代谢物和氨基酸分解酶,这意味着它的美味完全来自自身,而不像之前许多研究人员认为的那样与其外部生长环境中的微生物群有关。
基因测序还显示,黑松露含有与有性繁殖有关的基因,而以前人们只尝试用无性繁殖的方式来培植黑松露,研究人员因此建议可以两种方法并用,以探索有效的人工培植手段。(生物谷Bioon.com)
生物谷推荐原文出处:
Nature 28 March 2010 |doi:10.1038/nature08867
Périgord black truffle genome uncovers evolutionary origins and mechanisms of symbiosis
Francis Martin1, Annegret Kohler1, Claude Murat1, Raffaella Balestrini2, Pedro M. Coutinho3, Olivier Jaillon4,5,6, Barbara Montanini7, Emmanuelle Morin1, Benjamin Noel4,5,6, Riccardo Percudani7, Bettina Porcel4,5,6, Andrea Rubini8, Antonella Amicucci9, Joelle Amselem10, Véronique Anthouard4,5,6, Sergio Arcioni8, François Artiguenave4,5,6, Jean-Marc Aury4,5,6, Paola Ballario11, Angelo Bolchi7, Andrea Brenna11, Annick Brun1, Marc Buée1, Brandi Cantarel3, Gérard Chevalier12, Arnaud Couloux4,5,6, Corinne Da Silva4,5,6, France Denoeud4,5,6, Sébastien Duplessis1, Stefano Ghignone2, Benoît Hilselberger1,10, Mirco Iotti13, Benoît Marçais1, Antonietta Mello2, Michele Miranda14, Giovanni Pacioni15, Hadi Quesneville10, Claudia Riccioni8, Roberta Ruotolo7, Richard Splivallo16, Vilberto Stocchi9, Emilie Tisserant1, Arturo Roberto Viscomi7, Alessandra Zambonelli13, Elisa Zampieri2, Bernard Henrissat3, Marc-Henri Lebrun17, Francesco Paolocci8, Paola Bonfante2, Simone Ottonello7 & Patrick Wincker4,5,6
INRA, UMR 1136, INRA-Nancy Université, Interactions Arbres/Microorganismes, 54280 Champenoux, France
Istituto per la Protezione delle Piante del CNR, sez. di Torino and Dipartimento di Biologia Vegetale, Università degli Studi di Torino, Viale Mattioli, 25, 10125 Torino, Italy
Architecture et Fonction des Macromolécules Biologiques, UMR 6098 CNRS-Universités Aix-Marseille I & II, 13288 Marseille, France
CEA, IG, Genoscope, 2 rue Gaston Crémieux CP5702, F-91057 Evry, France
CNRS, UMR 8030, 2 rue Gaston Crémieux, CP5706, F-91057 Evry, France
Université d’Evry, F-91057 Evry, France
Dipartimento di Biochimica e Biologia Molecolare, Università degli Studi di Parma, Viale G.P. Usberti 23/A, 43100 Parma, Italy
CNR-IGV Istituto di Genetica Vegetale, Unità Organizzativa di Supporto di Perugia, via Madonna Alta, 130, 06128 Perugia, Italy
Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino, Via Saffi 2 - 61029 Urbino (PU), Italy
INRA, Unité de Recherche Génomique Info, Route de Saint-Cyr, 78000 Versailles, France
Dipartimento di Genetica e Biologia Molecolare & IBPM (CNR), Università La Sapienza, Roma, Piazzale, A. Moro 5, 00185 Roma, Italy
INRA, UMR Amélioration et Santé des Plantes, INRA-Université Blaise Pascal, INRA – Clermont-Theix, 63122 Saint-Genes-Champanelle, France
Dipartimento di Protezione e Valorizzazione Agroalimentare, Università degli Studi di Bologna, 40 126 Bologna, Italy
Dipartimento di Biologia di Base ed Applicata,
Dipartimento di Scienze Ambientali, Università degli Studi dell’Aquila, Via Vetoio Coppito 1 - 67100 L’Aquila, Italy
University of Goettingen, Molecular Phytopathology and Mycotoxin Research, Grisebachstrasse 6, D-37077 Goettingen, Germany
INRA, UMR BIOGER-CPP, INRA-Grignon, av Lucien Brétignières - 78850 Thiverval Grignon, France
The aPérigord black truffle (Tuber melanosporum Vittad.) and the Piedmont white truffle dominate today’s truffle market1, 2. The hypogeous fruiting body of T. melanosporum is a gastronomic delicacy produced by an ectomycorrhizal symbiont3 endemic to calcareous soils in southern Europe. The worldwide demand for this truffle has fuelled intense efforts at cultivation. Identification of processes that condition and trigger fruit body and symbiosis formation, ultimately leading to efficient crop production, will be facilitated by a thorough analysis of truffle genomic traits. In the ectomycorrhizal Laccaria bicolor, the expansion of gene families may have acted as a ‘symbiosis toolbox’4. This feature may however reflect evolution of this particular taxon and not a general trait shared by all ectomycorrhizal species5. To get a better understanding of the biology and evolution of the ectomycorrhizal symbiosis, we report here the sequence of the haploid genome of T. melanosporum, which at ~125?megabases is the largest and most complex fungal genome sequenced so far. This expansion results from a proliferation of transposable elements accounting for ~58% of the genome. In contrast, this genome only contains ~7,500 protein-coding genes with very rare multigene families. It lacks large sets of carbohydrate cleaving enzymes, but a few of them involved in degradation of plant cell walls are induced in symbiotic tissues. The latter feature and the upregulation of genes encoding for lipases and multicopper oxidases suggest that T. melanosporum degrades its host cell walls during colonization. Symbiosis induces an increased expression of carbohydrate and amino acid transporters in both L. bicolor and T. melanosporum, but the comparison of genomic traits in the two ectomycorrhizal fungi showed that genetic predispositions for symbiosis—‘the symbiosis toolbox’—evolved along different ways in ascomycetes and basidiomycetes.