生物谷报道:五月份出版的Genetics刊载了一篇由中科院昆明动物所研究人员撰写的有关酵母新基因最新研究成果。
长期以来,新基因被认为主要由重复基因分化产生,而从头起源如果不是没有的事件,那也是十分稀少的事件。去年以来,美国科学家在果蝇里率先发现了几个从头起源的新基因。但是,这些新基因是否确实有编码蛋白质的功能还无任何证据。
昆明动物所的博士研究生蔡晶等在导师王文研究员的指导下,发现了一个从头起源的酵母新基因BSC4。跨物种的比较发现了确凿的证据说明该基因起源于非编码序列;进化功能的限制分析、表达分析以及对已有蛋白质组和合并致死的数据分析表明,该基因可能参与DNA损伤修复,对酿酒酵母本身的进化可能有重要作用。在酵母这样一个基因组紧凑的模式生物中发现从头起源基因对认识新基因起源进化有重要意义。
相关研究结果刚刚发表于5月份的国际遗传学杂志Genetics上。文章一经发表,Nature Review Genetics的相关专栏就以“一个基因降生了”为题专门撰文介绍了这篇论文。高度评价这个工作首次提供了一批数据说明基因可以从非编码序列起源,这种序列先获得转录性能,然后经过突变获得开放阅读框(ORF)。(生物谷www.bioon.com)
生物谷推荐原始出处:
Genetics 2008 179: 487-496. doi:10.1534/genetics.107.084491
De Novo Origination of a New Protein-Coding Gene in Saccharomyces cerevisiae
Jing Cai*,,1, Ruoping Zhao*,1, Huifeng Jiang*, and Wen Wang*,2
* CAS–Max Planck Junior Research Group on Evolutionary Genomics, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences (CAS), Kunming, Yunnan 650223, China and Graduate School of Chinese Academy of Sciences, Beijing 100049, China
2 Corresponding author: CAS–Max Planck Junior Research Group on Evolutionary Genomics, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences (CAS), 32 E. Jiaochang Rd., Kunming 650223, China.
E-mail: wwang@mail.kiz.ac.cn
Origination of new genes is an important mechanism generating genetic novelties during the evolution of an organism. Processes of creating new genes using preexisting genes as the raw materials are well characterized, such as exon shuffling, gene duplication, retroposition, gene fusion, and fission. However, the process of how a new gene is de novo created from noncoding sequence is largely unknown. On the basis of genome comparison among yeast species, we have identified a new de novo protein-coding gene, BSC4 in Saccharomyces cerevisiae. The BSC4 gene has an open reading frame (ORF) encoding a 132-amino-acid-long peptide, while there is no homologous ORF in all the sequenced genomes of other fungal species, including its closely related species such as S. paradoxus and S. mikatae. The functional protein-coding feature of the BSC4 gene in S. cerevisiae is supported by population genetics, expression, proteomics, and synthetic lethal data. The evidence suggests that BSC4 may be involved in the DNA repair pathway during the stationary phase of S. cerevisiae and contribute to the robustness of S. cerevisiae, when shifted to a nutrient-poor environment. Because the corresponding noncoding sequences in S. paradoxus, S. mikatae, and S. bayanus also transcribe, we propose that a new de novo protein-coding gene may have evolved from a previously expressed noncoding sequence.