生物谷报道:由TIGR(The Institute for Genomic Research)的Vishvanath Nene教授及Notre Dame大学的David Severson教授领军的研究团队解开了埃及斑蚊(Aedes aegypti)的基因组(genome)序列,包括功能性基因及其它的DNA片断。此研究发表于5月18日的Science Express,题目为[Genome Sequence of Aedes aegypti, A Major Arbovirus Vector],研究成员来自世界各国24所大学及研究院共同完成。
加州大学河边分校(University of California, Riverside)的Jinsong Zhu教授研究团队,确认了埃及斑蚊基因组中大约80%,总共15,419个具有功能性的基因,研究人员也定序了大量的讯息RNAs(messenger RNAs),以确认这些基因的确是具有功能性的。
维吉尼亚理工大学(Virginia Tech)的Zhijian (Jake) Tu教授研究团队,则负责埃及斑蚊基因组中跳跃基因(transposable elements,简称TEs)的研究,结果发现大约有超过1,000个以上的跳跃基因,大约占据了整个基因组的50%以上,以名为Feilai的跳跃基因为例,它就有超过50,000个复制品,散置在整个基因组中。研究人员也表示,相较之下,甘比亚疟蚊(Anopheles gambiae)的跳跃基因则大约只占其基因组的25%左右。
Tu教授表示:「假如把基因组看成一个生态系统,跳跃基因就像是基因组中休息的一个家族,演化方式有别于一般的基因,它们什么事都不做,只是不断地重复复制。」不过,跳跃基因也许能开发成基因研究的工具,观察蚊子与病毒间的交互作用,而藉此控制疾病的传播。例如:利用跳跃基因携带抑制物基因到基因组中,让蚊子能抵抗病毒或阻止跳跃基因成为病毒的载体。虽然这些假设都还只是想象,但似乎成功的几率很大,也许未来这是一个阻絶虫媒疾病传播的新方法。
(资料来源 : Bio.com)
英文原文链接:
原始出处:
Published Online May 17, 2007
Science DOI: 10.1126/science.1138878
Submitted on December 15, 2006
Accepted on May 7, 2007
Genome Sequence of Aedes aegypti, a Major Arbovirus Vector
Vishvanath Nene 1*, Jennifer R. Wortman 1, Daniel Lawson 2, Brian Haas 1, Chinnappa Kodira 3, Zhijian Jake Tu 4, Brendan Loftus 5, Zhijong Xi 6, Karyn Megy 2, Manfred Grabherr 3, Quinghu Ren 1, Evgeny M. Zdobnov 7, Neil F. Lobo 8, Kathryn S. Campbell 9, Susan E. Brown 10, Maria F. Bonaldo 11, Jingsong Zhu 12, Steven P. Sinkins 13, David G. Hogenkamp 14, Paulo Amedo 1, Peter Arsenburger 12, Peter W. Atkinson 12, Shelby Bidwell 1, Jim Biedler 4, Ewan Birney 2, Robert V. Bruggner 8, Javier Costas 15, Monique R. Coy 4, Jonathan Crabtree 1, Matt Crawford 3, Becky deBruyn 8, David DeCaprio 3, Karin Eiglmeier 16, Eric Eisenstadt 1, Hamza El-Dorry 17, William M. Gelbart 9, Suely L. Gomes 17, Martin Hammond 2, Linda I. Hannick 1, James R. Hogan 8, Michael H. Holmes 1, David Jaffe 3, Spencer J. Johnston 18, Ryan C. Kennedy 8, Hean Koo 1, Saul Kravitz 19, Evgenia V. Kriventseva 20, David Kulp 21, Kurt LaButti 3, Edward Lee 1, Song Li 4, Diane D. Lovin 8, Chunhong Mao 4, Evan Mauceli 3, Carlos F. M. Menck 22, Jason R. Miller 1, Philip Montgomery 3, Akio Mori 8, Ana L. Nascimento 23, Horacio F. Naveira 24, Chad Nusbaum 3, Sinéad B. O’Leary 3, Joshua Orvis 1, Mihaela Pertea 25, Hadi Quesneville 26, Kyanne R. Reidenbach 14, Yu-Hui Rogers 19, Charles W. Roth 16, Jennifer R. Schneider 8, Michael Schatz 25, Martin Shumway 1, Mario Stanke 27, Eric O. Stinson 8, Jose M. C. Tubio 28, Janice P. VanZee 14, Sergio Verjovski-Almeida 17, Doreen Werner 29, Owen White 1, Stefan Wyder 20, Qi Zeng 3, Qi Zhao 1, Yongmei Zhao 1, Catherine A. Hill 14, Alexander S. Raikhel 12, Marcelo B. Soares 11, Dennis L. Knudson 10, Norman H. Lee 30, James Galagan 3, Steven L. Salzberg 25, Ian T. Paulsen 1, George Dimopoulos 6, Frank H. Collins 8, Birren Bruce 3, Claire M. Fraser-Liggett 1, David W. Severson 8*
1 The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, MD 20850, USA.
2 European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK.
3 Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02141, USA.
4 Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.
5 The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, MD 20850, USA.; Present address: University College Dublin, Dublin 4, Ireland.
6 Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA.
7 University of Geneva Medical School, 1 rue Michel-Servet, Geneva 1211, Switzerland.; Swiss Institute of Bioinformatics, 1 rue Michel-Servet, Geneva 1211, Switzerland.; Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
8 University of Notre Dame, Notre Dame, IN 46556, USA.
9 Harvard University, Cambridge, MA 02138, USA.
10 College of Agricultural Sciences, Colorado State University, Fort Collins, CO 80523, USA.
11 Northwestern University, Chicago, IL 60614, USA.
12 University of California, Riverside, CA 92521, USA.
13 University of Oxford, Oxford OX1 3PS, UK.
14 Purdue University, West Lafayette, IN 47907, USA.
15 Centro Nacional de Genotipado, Fundación Pública Galega de Medicina Xenómica, Hospital Clínico Universitario de Santiago, Edif. Consultas Planta -2, Santiago de Compostela E-15706, Spain.
16 Institut Pasteur, Paris 75724, France.
17 Universidade de Sao Paulo, Instituto de Quimica, Sao Paulo SP 05508-900, Brazil.
18 Texas A&M University, College Station, TX 77843, USA.
19 Joint Technology Center, 5 Research Place, Rockville, MD 20850, USA.
20 University of Geneva Medical School, 1 rue Michel-Servet, Geneva 1211, Switzerland.
21 University of Massachusetts, Amherst, MA 01003, USA.
22 Universidade de Sao Paulo, Institute of Biomedical Sciences, Sao Paulo SP 05508-900, Brazil.
23 Instituto Butantan, Sao Paulo SP 05503-900, Brazil.
24 Universidade da Coruña, 15001 A Coruña, Spain.
25 The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, MD 20850, USA.; Present address: 3125 Biomolecular Sciences Building, University of Maryland, College Park, MD 20742, USA.
26 Institut Jacques Monod, CNRS, Université Paris Diderot et Université Pierre-et-Marie Curie 2, Place Jussieu, Paris 75252, France.
27 507A Engineering 2, University of California, 1156 High Street, Santa Cruz, CA 95064, USA.; Universität Göttingen, Goldschmidtstraße 1, Göttingen 37077, Germany.
28 Complexo Hospitalario Universitario de Santiago, Santiago de Compostela 15706, Spain.
29 Universität Göttingen, Goldschmidtstraße 1, Göttingen 37077, Germany.
30 The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, MD 20850, USA.; Present address: George Washington University Medical Center, Ross Hall, Room 603, 2300 I Street NW, Washington, DC 20037, USA.
* To whom correspondence should be addressed.
Vishvanath Nene , E-mail: nene@tigr.org
David W. Severson , E-mail: severson.1@nd.edu
Abstract
We present a draft sequence of the genome of Aedes aegypti, the primary vector for yellow fever and dengue fever, which at ~1.38 Gbp is ~5-fold larger in size than the genome of the malaria vector, Anopheles gambiae. Nearly 50% of the Aedes aegypti genome consists of transposable elements. These contribute to a ~4-6 fold increase in average gene length and the size of intergenic regions relative to Anopheles gambiae and Drosophila melanogaster. Nevertheless, chromosomal synteny is generally maintained between all three insects although conservation of orthologous gene order is higher (~2-fold) between the mosquito species than between either of them and fruit fly. An increase in genes encoding odorant binding, cytochrome P450 and cuticle domains relative to Anopheles gambiae suggests that members of these protein families underpin some of the biological differences between them.